

Domain-Adaptive Sentiment Analysis Across Online Social Networks

Jingli Shi (19091064)

Supervisors & Advisor:

Dr. Weihua Li, AUT Dr. Sira Yongchareon, AUT A/Prof. Jian Yu, AUT A/Prof. Quan Bai, UTAS

NEW ZEALAND

Outline

- □ Introduction
 - Research Background
 - Literature Review
 - Research Limitations & Questions
- Design of Study
 - Research Methodology
 - Proposed Method
 - Datasets Analysis
 - Evaluation Metrics
- Current Progress
 - Aspect and Relation Extraction
 - Feature Selection-based Aspect Extraction
- □ Timetable for Completion
- Publications

Research Background (1/3)

• What is Sentiment Analysis?

Sentiment analysis aims to apply <u>natural language processing</u> (NLP), <u>text analysis</u>, <u>computational linguistics</u>, and <u>biometrics</u> to systematically identify, extract, quantify, and study affective states and subjective information.

• Why Sentiment Analysis is important?

- Business and Organization: benchmark products and services; place related products based on customer opinion.
- Individuals: make decision to buy products or services;

• What Sentiment Analysis can do?

Social media monitoring, customer support management, customer feedback, brand monitoring and reputation management, voice of customer, voice of employee, product analysis, market research and competitive research, etc.

Research Background (2/3)

Research Background (3/3)

- Aspect Extraction
- Opinion Extraction
- Sentiment Classification

Literature Review (2/7)

□ Aspect Extraction

- Pre-Trained LM based Methods
- Graph based Methods

Literature Review (3/7)

□ Aspect Extraction

- Pre-Trained LM based Methods
- Graph based Methods

Literature Review (4/7)

□ Aspect-Opinion Extraction

- Pipeline based Methods
- Co-extraction based Methods

Literature Review (5/7)

□ Aspect-Opinion Extraction

- Pipeline based Methods
- Co-extraction based Methods

Literature Review (6/7)

Cross-Domain Sentiment Classification

- Feature Engineering based Methods
- Deep Learning based Methods

Literature Review (7/7)

Cross-Domain Sentiment Classification

- Feature Engineering Methods
- Deep Learning-based Methods

Deep Learning Model

12/30

Research Limitations & Questions (1/3)

□ Aspect Extraction

- Ignore Important Features
 - Linguistic features (i.e., lemma, tag, dep, shape, etc.)
 - Inherent structure (i.e., relation between aspects)
- Manually labelled Dataset

RQ1

How to effectively extract contextual and linguistic features for aspect extraction in sentiment analysis?

Research Limitations & Questions (2/3)

□ Aspect-Opinion Extraction

- Extract aspect and opinion individually
- Manual Annotation of Syntactic Info

RQ2

How to automatically generate syntax structure information and learn useful syntactic representations for aspect-opinion extraction?

Research Limitations & Questions (3/3)

Cross-Domain Sentiment Classification

- Ignore Important Info in Target Data
- Ignore Sentiment-Specific Features

RQ3

How to effectively extract domain-specific and domain-invariant features for cross-domain sentiment classification?

[Domain: Restaurant]	"fast"	→	"service"	(Positive)
[Domain: Laptop]	"fast"	→	"CPU"	(Positive)
	"fast"	→	"power consumption".	(Negative)

15/30

Research Methodology

RQ1:Graph-based Aspect and Relation Extraction

Limitations in RQ1:

- Ignore Important Features
 - Linguistic features
 - Inherent structure [CG¹]
- Manually labelled Dataset [ACE²]

- **1. Jingli Shi**, Weihua Li, Sira Yongchareon, Yi Yang, Quan Bai. Graph-based Joint Pandemic Concern and Relation Extraction on Twitter. Expert Systems with Applications (2021) (submitted)
- Shi, J., Li, W., Yang, Y., Yao, N., Bai, Q., Yongchareon, S., & Yu, J. (2021). Automated Concern Exploration in Pandemic Situations-COVID-19 as a Use Case. 17th Pacific Rim Knowledge Acquisition Workshop, PKAW 2020, Yokohama, Japan, January 7–8, 2021.

RQ2: Aspect-Opinion Pair Extraction

Limitations in RQ2:

- Extract aspect and opinion individually [AO Pair]
- Manual Annotation of Syntactic
 Info [Automated Parser]

RQ3: Cross-Domain Sentiment Classification

Limitations in RQ3

Ignore Important Info in Target
 Data

[Domain Encoder & Attention]

Ignore Sentiment-Specific Features
 [Sentiment Encoder & Attention]

Dataset Analysis (1/3)

	Sem	Eval-201	4	SemEval	-2015	SemEval-	2016	Other Dataset							
	Restaurant	Laptop	Twitter	Restaurant	Laptop	Restaurant	Laptop	Yelp	Amazon	Twitter					
Train	3502	2313	6248	1315	1739	2000	3045	10k	10k	30k					
Test	1120	638	692	685	277	676	800	10k	10k	8k					

Dataset Analysis (2/3)

Dataset Analysis (3/3)

Dataset		Positive	Negative	Neutral
SemVal-2014	Train	2164	805	633
(Restaurant)	Test	728	196	196
SemVal-2014	Train	987	866	460
(Laptop)	Test	341	128	169
SemVal-2014	Train	1561	1560	3127
(Twitter)	Test	173	173	346
SemEval-2015	Train	912	256	36
(Restaurant)	Test	326	182	34
SemEval-2016	Train	1240	439	69
(Restaurant)	Test	469	117	30
Yelp	Train	10k	10k	10k
Amazon	Train	10k	10k	10k
Twitter	Train	10k	10k	10k

Dataset	Domains
Amazon	Book, DVD,
	Electronic, and
	Kitchen Appliance
SemEval	Laptop,
	Restaurant,
	Twitter

Evaluation Metrics

Precision (P): the number of true positive (TP) results divided by the sum of true positive (TP) and false positive (FP) results predicted by the method

Recall (R): is the number of true positive results divided by the sum of true positive and false negative results

F1 Score: is calculated using precision and recall

$$P = \frac{TP}{TP + FP}$$
$$R = \frac{TP}{TP + FN}$$
$$F1 = 2 * \frac{P * R}{P + R}$$

Current Progress - Graph-based Concern and Relation Extraction

RQ 1:

- Inherent Structure (CG)
- Feature Synchronization

Experimental Results

L.

Model	Manual-la	belled T	weets	Auto-labelled Tweets							
Widder	Precision	Recall	F1	Precision	Recall	F1					
One-Decoder	0.160	0.160	0.160	0.316	0.316	0.316					
Multi-Decoder	0.150	0.150	0.150	0.340	0.340	0.340					
NovelTagging	0.273	0.336	0.302	0.570	0.593	0.582					
SPTree	0.424	0.349	0.383	0.434	0.366	0.397					
JointER	0.644	0.369	0.469	0.405	0.314	0.354					
SPERT	0.239	0.675	0.339	0.310	0.839	0.421					
Proposed Model	0.545	0.630	0.567	0.638	0.642	0.592					
		_									

Current Progress - Feature Selection-based Aspect Extraction

RQ1:

- Linguistic Features
- Feature Selection

Experimental Results

• Dataset: SemEval-2014, SemEval-2015, and SemEval-2016

		Laptop)	Re	estaura	nt		SemEval-15	5 SemEval-16					
Method	Р	R	F1	Р	R	F1	Method	F1	F1					
RandomForest	0.700	0.533	0.606	0.719	0.614	0.663	RandomForest	0.513	0.504					
MultinomialNB	0.537	0.733	0.620	0.563	0.766	0.649	MultinomialNB	0.483	0.502					
SVM	0.737	0.587	0.654	0.761	0.695	0.726	SVM	0.504	0.463					
RNN-based	0.810	0.757	0.782	0.828	0.804	0.816	LSTM	0.683	0.704					
DLIREC	0.819	0.671	0.738	0854	0.827	0.840	DE-CNN	0.683	0.744					
PSO	0.855	0.667	0.749	0.871	0.821	0.845	 HAST	0.715	0.736					
Proposed	0.889	0.755	0.807	0.856	0.840	0.847	Proposed	0.722	0.746					

Timetable for Completion

		2020										_	_	_	20	021			_	_	_	2022									2023					
Activities / Date	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	1 0	1 1	12	1	2	3
1. PhD Course 1.1. Research Method																																				
2. Finalise Research Scope																																				
3. Develop Research Questions																																				
4. RQ1: Graph-based Aspect Extraction																																				
4.1 Literature Review																																				
4.2 Data Collection & Analysis																																				
4.3 Proposed Method Implementation																																				
4.4 Conference Paper 1																																				
4.5 Journal Paper 1																																				
5. RQ2: Aspect-Opinion Pair Extraction																																				
5.1 Literature Review																																				
5.2 Data Collection & Analysis																																		'		1
5.3 Proposed Method Implementation																																				
5.4 Conference Paper 2																																				
5.5 Journal Paper 2																																				
6. RQ3: Cross-Domain Sentiment Analysis																																				
6.1 Literature Review																																				
6.2 Data Collection & Analysis																																				
6.3 Proposed Method Implementation																																				
6.4 Conference Paper 3			\top																																	
6.5 Journal Paper 3		\square	+		\vdash								\vdash														\square	\square	+							
7. Preparing Thesis																																				

Published Papers

- Shi, J., Li, W., Yang, Y., Yao, N., Bai, Q., Yongchareon, S., & Yu, J. (2021). Automated Concern Exploration in Pandemic Situations-COVID-19 as a Use Case. In Knowledge Management and Acquisition for Intelligent Systems: 17th Pacific Rim Knowledge Acquisition Workshop, PKAW 2020, Yokohama, Japan, January 7–8, 2021, Proceedings 17 (pp. 178-185). Springer International Publishing.
- **2. Jingli Shi**, Weihua Li, Sira Yongchareon, Yi Yang, Quan Bai. Graph-based Joint Pandemic Concern and Relation Extraction on Twitter. Expert Systems with Applications (2021) (submitted)
- **3. Jingli Shi**, Weihua Li, Quan Bai and Takayuki Ito. BeeAE: Effective Aspect Extraction using Artificial Bee Colony. The Pacific Rim International Conference on Artificial Intelligence (PRICAI) 2021 (submitted)

Thank you

Q & A